Search results for "Indefinite potential"
showing 6 items of 6 documents
Superlinear Robin Problems with Indefinite Linear Part
2018
We consider a semilinear Robin problem with an indefinite linear part and a superlinear reaction term, which does not satisfy the usual in such cases AR condition. Using variational methods, together with truncation–perturbation techniques and Morse theory (critical groups), we establish the existence of three nontrivial solutions. Our result extends in different ways the multiplicity theorem of Wang.
Multiple nodal solutions for semilinear robin problems with indefinite linear part and concave terms
2017
We consider a semilinear Robin problem driven by Laplacian plus an indefinite and unbounded potential. The reaction function contains a concave term and a perturbation of arbitrary growth. Using a variant of the symmetric mountain pass theorem, we show the existence of smooth nodal solutions which converge to zero in $C^1(\overline{\Omega})$. If the coefficient of the concave term is sign changing, then again we produce a sequence of smooth solutions converging to zero in $C^1(\overline{\Omega})$, but we cannot claim that they are nodal.
Semilinear Robin problems driven by the Laplacian plus an indefinite potential
2019
We study a semilinear Robin problem driven by the Laplacian plus an indefinite potential. We consider the case where the reaction term f is a Carathéodory function exhibiting linear growth near ±∞. So, we establish the existence of at least two solutions, by using the Lyapunov-Schmidt reduction method together with variational tools.
Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
2020
AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.
On a Robin (p,q)-equation with a logistic reaction
2019
We consider a nonlinear nonhomogeneous Robin equation driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation) plus an indefinite potential term and a parametric reaction of logistic type (superdiffusive case). We prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter \(\lambda \gt 0\) varies. Also, we show that for every admissible parameter \(\lambda \gt 0\), the problem admits a smallest positive solution.
Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
2020
We consider a parametric nonlinear Robin problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential. The reaction term is $$(p-1)$$-superlinear but need not satisfy the usual Ambrosetti–Rabinowitz condition. We look for positive solutions and prove a bifurcation-type result for the set of positive solutions as the parameter $$\lambda >0$$ varies. Also we prove the existence of a minimal positive solution $$u_\lambda ^*$$ and determine the monotonicity and continuity properties of the map $$\lambda \rightarrow u_\lambda ^*$$.